Rhodium-Catalyzed Oxidative Synthesis of Quinoline-Fused Sydnones via 2-fold C-H Bond Activation

Lei $\mathrm{Li},{ }^{\dagger}$ He Wang, ${ }^{\dagger}$ Xifa Yang, Lingheng Kong, Fen Wang,* and Xingwei Li^{*}
Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China

(S) Supporting Information

Abstract

Rh}(\) III $)$-catalyzed synthesis of mesoionic heterocycles has been achieved via $\mathrm{C}-\mathrm{H}$ activation of sydnones and oxidative coupling with internal alkynes. This reaction occurred under mild conditions with high efficiency, broad substrate scope, and low catalyst loading. Moreover, synthetic -Low catalyst loading -Mild reaction conditions -Readily available substrates -Broad scope -Late-stage derivatizations applications of a coupled product have been demonstrated in the late-stage derivatization into a variety of highly functionalized scaffolds.

Heterocyclic frameworks are embedded in a large number of conjugated π-systems that exhibit important electrochemical and photochemical properties with potential applications as organic semiconductors and luminescence materials. ${ }^{1}$ Owing to their broad applications, numerous traditional and metal-mediated methods have been developed for synthesis of fused (hetero) aromatics. ${ }^{2}$ Sydnones ${ }^{3}$ are a useful class of mesoionic heterocycles that have received considerable attention with intriguing structural, chemical, and biological properties. ${ }^{3 a}$ The most common functionalizations of sydnones include electrophilic aromatic substitution, metalation, Pd-catalyzed $\mathrm{C}-\mathrm{H}$ arylation, and alkenylation ${ }^{4}$ at the most acidic $\mathrm{C} 4-\mathrm{H}$ position. ${ }^{3 \mathrm{a}}$ In particular, sydnones have been widely employed in cycloaddition reactions with various dipolarophiles. ${ }^{3 a}$ Despite the significance, very limited examples have been reported for the functionalization of sydnones leading to synthesis of fused, π-extended systems, ${ }^{5}$ which required highly functionalized starting materials and multistep synthesis. In this regard, the development of efficient strategies for the mild synthesis of fused sydnones is highly desirable.

Transition metal catalyzed $\mathrm{C}($ aryl) -H bond activation and functionalization has proved to be a powerful tool for the construction of complex structures. ${ }^{6}$ In particular, $\mathrm{Cp}{ }^{*} \mathrm{Rh}(\mathrm{III})$ catalysts have been extensively employed as catalysts in the functionalization of a large array of arenes owing to high efficiency, broad scope, and high functional group tolerance. ${ }^{7}$ Recently, Miura and Satoh reported the synthesis of π conjugated molecules via $\mathrm{Rh}(\mathrm{III})$-catalyzed double/multiple $\mathrm{C}-\mathrm{H}$ activation-oxidative annulation between arenes/heteroarenes and alkynes. ${ }^{8}$ Afterward, the groups of Li, ${ }^{9}$ Wang, ${ }^{10}$ Chen, ${ }^{11}$ Choudhury, ${ }^{12}$ and others ${ }^{13}$ made progress in the synthesis of various π-conjugated molecules. Very recently, Cheng, You, and others independently reported $\mathrm{Rh}(\mathrm{III})$ catalyzed $\mathrm{C}-\mathrm{H}$ activation of arenes for the synthesis of ionic heterocycles such as isoquinolinium, cinnolinium, quinolizinium, pyridinium, and related salts. ${ }^{14}$ Despite the progress, such annulation reactions typically required high temperature, and only very limited examples have been reported for heterocycle synthesis under mild conditions. ${ }^{12 d, 15}$ In addition, the synthesis
of fused sydnones via the transition metal catalyzed $\mathrm{C}-\mathrm{H}$ activation remains unexplored. In order to solve the limitation of sydnone functionalization, we now report a $\mathrm{Rh}(\mathrm{III})$-catalyzed efficient oxidative synthesis of quinoline-fused sydnones via 2fold $\mathrm{C}-\mathrm{H}$ bond activation under mild conditions.

We initiated our investigation by utilizing the coupling of N phenylsydnone (1a) with diphenylacetylene (2a) as the model reaction (Table 1). Using $\left[\mathrm{RhCp} * \mathrm{Cl}_{2}\right]_{2}(4 \mathrm{~mol} \%)$ as a catalyst,

Table 1. Optimization of the Reaction Conditions ${ }^{a}$

entry	n	oxidant	$t\left({ }^{\circ} \mathrm{C}\right)$	solvent	yield $(\%)^{b}$
1	4	$\mathrm{Cu}(\mathrm{OAc})_{2}$	80	$\mathrm{CH}_{3} \mathrm{CN}$	81
2	4	$\mathrm{Cu}(\mathrm{OAc})_{2}$	60	$\mathrm{CH}_{3} \mathrm{CN}$	91
3	4	$\mathrm{Cu}(\mathrm{OAc})_{2}$	40	$\mathrm{CH}_{3} \mathrm{CN}$	96
4	4	$\mathrm{Cu}(\mathrm{OAc})_{2}$	25	$\mathrm{CH}_{3} \mathrm{CN}$	97
5	1	$\mathrm{Cu}(\mathrm{OAc})_{2}$	25	$\mathrm{CH}_{3} \mathrm{CN}$	$97\left(22^{c}\right)$
6	1	$\mathrm{Cu}(\mathrm{OAc})_{2}$	25	MeOH	10
7	1	$\mathrm{Cu}(\mathrm{OAc})_{2}$	25	DCM	nd
8	1	$\mathrm{Cu}(\mathrm{OAc})_{2}$	25	1,4 -dioxane	15
9	1	$\mathrm{Cu}(\mathrm{OAc})_{2}$	25	toluene	<5
10	1	AgOAc^{2}	25	$\mathrm{CH}_{3} \mathrm{CN}$	nd
11	1	$\mathrm{Ag}_{2} \mathrm{CO}$	25	$\mathrm{CH}_{3} \mathrm{CN}$	12
12	1		25	$\mathrm{CH}_{3} \mathrm{CN}$	nd
13	0	$\mathrm{Cu}(\mathrm{OAc})_{2}$	25	$\mathrm{CH}_{3} \mathrm{CN}$	nd

${ }^{a}$ The reaction was carried out using sydnone (0.2 mmol), alkyne (0.3 $\mathrm{mmol}),\left[\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right]_{2}(1 \mathrm{~mol} \%)$, and $\mathrm{Cu}(\mathrm{OAc})_{2}(0.4 \mathrm{mmol})$ in a solvent (3 mL) under nitrogen at $25^{\circ} \mathrm{C}$ for 18 h . ${ }^{b}$ Isolated yield after column chromatography. ${ }^{c}$ Reaction was performed under air.

[^0]
Scheme 1. Scope of Sydnones ${ }^{a, b}$

3aa, 97% 89% (6.5 mmol scale)

3ga, $78 \%{ }^{e}$

3ca, 76\%
3da, 86\%

${ }^{a}$ The reaction was carried out using sydnone $(0.2 \mathrm{mmol})$, alkynes $(0.3 \mathrm{mmol}),\left[\mathrm{RhCp} * \mathrm{Cl}_{2}\right]_{2}(1 \mathrm{~mol} \%)$, and $\mathrm{Cu}(\mathrm{OAc})_{2}(0.4 \mathrm{mmol}) \mathrm{in} \mathrm{CH} \mathrm{CN}_{3}(3$ mL) under nitrogen at $25^{\circ} \mathrm{C}$ for 18 h . ${ }^{b}$ Isolated yield after column chromatography. ${ }^{c}$ Reaction was performed using [$\left.\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right]_{2}(0.5 \mathrm{~mol} \%)$ in a gram scale. ${ }^{d}\left[\mathrm{RhCp} * \mathrm{Cl}_{2}\right]_{2}(4 \mathrm{~mol} \%)$ at $80^{\circ} \mathrm{C} .{ }^{e}\left[\mathrm{RhCp} * \mathrm{Cl}_{2}\right]_{2}(2 \mathrm{~mol} \%)$ at $60{ }^{\circ} \mathrm{C}$ in $\mathrm{MeOH} .{ }^{f}\left[\mathrm{RhCp} * \mathrm{Cl}_{2}\right]_{2}(2 \mathrm{~mol} \%)$ at $60{ }^{\circ} \mathrm{C} .{ }^{g}\left[\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right]_{2}(2$ $\mathrm{mol} \%$) at $40^{\circ} \mathrm{C}$ in MeOH .
the desired mesoionic product 3aa was indeed isolated in 81% yield in $\mathrm{CH}_{3} \mathrm{CN}$ at $80^{\circ} \mathrm{C}$ (entry 1). Screening of the reaction temperature revealed that the yield of 3aa was significantly improved at $25^{\circ} \mathrm{C}$ (entry 4 versus entries 2,3). To our delight, the product 3aa was isolated in 97% yield when the catalyst loading was lowered to $1 \mathrm{~mol} \%$ (entry 5). However, a sluggish reaction was observed when the reaction was performed under air (entry 5). Investigation of the solvents showed that $\mathrm{CH}_{3} \mathrm{CN}$ is superior to $\mathrm{MeOH}, \mathrm{DCM}, 1,4$-dioxane, and toluene (entries $6-9)$. Further examination of the oxidant revealed that AgOAc or $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ all proved disadvantageous (entries 10, 11). Our control experiments confirmed that no desired product was observed when either the $\mathrm{Rh}(\mathrm{III})$ catalyst or $\mathrm{Cu}(\mathrm{OAc})_{2}$ was omitted (entries 12, 13).

With the establishment of the optimal conditions, we next explored the scope and generality of this coupling system (Scheme 1). It was found that sydnones with electron-donating groups such as $\mathrm{Me},{ }^{t} \mathrm{Bu}$, OMe , or OEt at the para position of phenyl ring all coupled smoothly with $\mathbf{2 a}$ to afford the products (3ba-3ea) in moderate to high yields. Introduction of para halogen groups ($3 \mathbf{f a}, 3 \mathrm{ga}$) and electron-withdrawing groups ($3 \mathrm{ha}-3 \mathrm{ka}$) is tolerated, but a higher catalyst loading ($2 \mathrm{~mol} \%$) and higher temperature are necessary with MeOH being a solvent. Introduction of meta alkyl substituents was also tolerated, delivering the products in high yields (3la, 3ma). In contrast, while sydnones bearing meta Cl and Br reacted with 2a to afford the corresponding products 3na and 3oa, the hydrodehalogenated product 3aa was surprisingly isolated in a
comparable yield. ${ }^{16}$ We speculated that in these cases the $\mathrm{C}-\mathrm{H}$ activation might competitively occur at the more hindered ortho site, followed by dehalogenation at the ortho position of the metal. Moreover, product 3aa was isolated in 89% yield in a gram-scale (6.5 mmol) synthesis from 1a and 2 a under a reduced loading ($0.5 \mathrm{~mol} \%$) of the catalyst, indicative of the synthetic practicality of this system.

We next examined the scope with respect to internal alkynes (Scheme 2). Symmetric diarylacetylenes bearing both electrondonating and -withdrawing groups at the para or meta position all coupled in good to excellent yields (3ab-3ak). Notably, the diarylactylene substrate has been smoothly extended to bis(2thienyl)acetylene in good yield (3al). The alkyne is not limited to a diarylacetylene; aliphatic internal alkynes (3am, 3an) and diethyl but-2-ynedioate (3ao) all reacted smoothly to afford the corresponding products in $77-87 \%$ yields under a higher catalyst loading at $80^{\circ} \mathrm{C}$. Unsymmetrical alkynes such as 1 -phenyl-1-propyne, 1-phenyl-1-butyne, 1-phenyl-1-pentyne, and ethyl 3-phenylpropiolate were also applicable, but with moderate to low regioselectivity (3ap-3as). Nevertheless, the overall yields of the isomeric products are generally high and the regioisomers can be chromatographically separated. The identity of the regiosiomer has been established by NOESY analyses (see Supporting Information). In addition, several alkynes were also allowed to couple with sydnone $\mathbf{1 b}$ to further evaluate the generality of the reaction, and the corresponding products were isolated in good to high yields ($\mathbf{3 b c}, \mathbf{3 b j}$, and 3bm).

Scheme 2. Scope of Alkynes in Fused Sydnone Synthesis ${ }^{a, b}$

3al, $87 \%{ }^{\text {d }}$

R = Et, 3am, $79 \%{ }^{e}$
$R=\operatorname{Pr}, 3$ an, $87 \%{ }^{e}$ $R=\mathrm{CO}_{2} \mathrm{Et}, 3 \mathrm{ao}, 77 \%{ }^{\mathrm{e}}$

3bc, 89%

3bj, $64 \%^{c}$

3bm, $79 \%^{e}$
${ }^{a}$ The reaction was carried out using sydnone (0.2 mmol), alkyne $(0.3 \mathrm{mmol}),\left[\mathrm{RhCp} * \mathrm{Cl}_{2}\right]_{2}(1 \mathrm{~mol} \%)$, and $\mathrm{Cu}(\mathrm{OAc}){ }_{2}(0.4 \mathrm{mmol})$ in $\mathrm{MeCN}(3 \mathrm{~mL})$ under nitrogen at $25^{\circ} \mathrm{C}$ for 18 h . ${ }^{b}$ Isolated yield after column chromatography. ${ }^{c}\left[\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right]_{2}(2 \mathrm{~mol} \%)$ at $40^{\circ} \mathrm{C} .{ }^{d}\left[\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right]_{2}(4 \mathrm{~mol} \%)$ at 60 ${ }^{\circ} \mathrm{C}$. ${ }^{e} \mathrm{I}\left[\mathrm{RhCp} * \mathrm{Cl}_{2}\right]_{2}(4 \mathrm{~mol} \%)$ at $80{ }^{\circ} \mathrm{C}$.

Scheme 3. Chemical Transformations of Product 3aa

We next examined the synthetic utility of a fused sydnone product (Scheme 3). The 1,3-dipolar cycloaddition of 3aa with acrylic acid in the presence of $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ afforded a pyrazole-fused quinoline (4) in good yield. ${ }^{17}$ Next, a dipolar additiondecarboxylation reaction between 3aa and a benzyne precursor gave heteroarene 5 in high efficiency via an additionelimination pathway. ${ }^{18}$ When the aryne was replaced by dimethyl acetylenedicarboxylate, an analogous product 6 was isolated in 81% yield. ${ }^{19}$ Moreover, the addition of 3aa to N ethylmaleimide afforded exclusively a bis-adduct (7) in 72% yield. ${ }^{20}$ These important derivatization reactions for synthesis
of functionalized scaffolds suggested the synthetic utility of the coupled products.

Several experiments have been performed to explore the reaction mechanism. An intermolecular competition between two different alkynes showed that the electron-rich one reacted preferentially (eq 1). H/D exchange reactions have been carried out for sydnone $\mathbf{1 a}$ in the presence of alkyne $\mathbf{2 a}$, but no deteurium was incorporated into the product (eq 2). On the other hand, H / D exchange of 1a was observed at the 4-position in the absence of any diphenylacetyene (see Supporting Information), indicating that the $\mathrm{C}(4)-\mathrm{H}$ cleavage is reversible. The kinetic isotope effect (KIE) was thus measured. Two

No deuteration
parallel reactions have been performed at a low conversion (eq 3), and a value of $k_{\mathrm{H}} / k_{\mathrm{D}}=4.0$ was obtained on the basis of ${ }^{1} \mathrm{H}$ NMR analysis, suggesting that $\mathrm{C}-\mathrm{H}$ bond cleavage is likely involved in the turnover-limiting step.

On the basis of these preliminary results and our previous studies, ${ }^{9 \mathrm{a}}$ a plausible catalytic cycle has been proposed starting from an active $\left[\mathrm{RhCp}^{*} \mathrm{X}_{2}\right]\left(\mathrm{X}=\mathrm{SbF}_{6}\right.$ or OAc) species (Scheme 4 , see Supporting Information for alternative mechanisms). The

Scheme 4. Proposed Mechanism

reaction is initiated by cyclometalation of the sydnone to deliver a rhodacyclic intermediate A, which is proposed to undergo nitrogen decoordination and rollover $\mathrm{C}-\mathrm{H}$ activation to give a Rh (III) diaryl intermediate \mathbf{B}. Subsequent insertion of an incoming alkyne furnishes a seven-membered rhodacycle \mathbf{C}. Reductive elimination of \mathbf{C} then affords the product 3aa together with a $\mathrm{Rh}(\mathrm{I})$ species, which is reoxidized by $\mathrm{Cu}(\mathrm{OAc})_{2}$ to regenerate the rhodium(III) active catalyst for the next catalytic cycle. We noted that in another alternative pathway the $\mathrm{Rh}-\mathrm{C}$ (aryl) bond of A may undergo migratory insertion into the alkyne, followed by nitrogen decoordination and rollover $\mathrm{C}-\mathrm{H}$ activation to reach the same intermediate \mathbf{C}. Besides this proposed mechanism, two other related pathways that involve different seven-membered rhodacyclic species as a result of the migratory insertion of alkyne are given in the Supporting Information.

In summary, we have achieved an efficient Rh (III)-catalyzed synthesis of quinoline-fused sydnones via $\mathrm{C}-\mathrm{H}$ activation of simple N-arylsydnones. This catalytic system features mild conditions and tolerates a broad scope of both sydnones and internal alkynes under low catalyst loading. Preliminary mechanistic studies have been performed, and a plausible catalytic cycle has been proposed. Furthermore, the synthetic applications of coupled products have been demonstrated in their diverse dipolar addition reactions to afford highly functionalized scaffolds.

EXPERIMENTAL SECTION

General Information. All chemicals were obtained from commercial sources and were used as received unless otherwise noted. N-Arylsydnones ${ }^{21}$ and alkynes ${ }^{22}$ were prepared by following literature reports. All $\mathrm{Rh}(\mathrm{III})$-catalyzed reactions were carried out in a nitrogen-filled drybox. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded using CDCl_{3} or DMSO as a solvent on a 400 MHz spectrometer at 298 K . The chemical shift is given in dimensionless δ values and is frequency referenced relative to TMS in ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy. HRMS data were obtained via ESI mode with a TOF mass analyzer. All solvents were obtained from commercial sources and were used as received. Column chromatography was performed on silica gel (300400 mesh) using ethyl acetate (EA)/petroleum ether (PE).

General Procedure for Synthesis of 3. N-Arylsydnone (0.20 $\mathrm{mmol})$, alkyne $(0.3 \mathrm{mmol}),\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(1.2 \mathrm{mg}, 1 \mathrm{~mol} \%)$, $\mathrm{Cu}(\mathrm{OAc})_{2}(72.6 \mathrm{mg}, 0.4 \mathrm{mmol})$, and $\mathrm{CH}_{3} \mathrm{CN}(2.0 \mathrm{~mL})$ were charged into a reaction tube. The reaction mixture was stirred under nitrogen at rt for 18 h . After the solvent was removed under reduced pressure, the residue was purified by silica gel chromatography using PE/EA (20:1-4:1) to afford the desired product 3.
4,5-Diphenyl-[1,2,3]oxadiazolo[3,4-a]quinolin-10-ium-3-olate (3aa): yellow solid ($97 \%, 65.5 \mathrm{mg}$); mp 244-245 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.50(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.65$ $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.29(\mathrm{~m}, 3 \mathrm{H})$, 7.24-7.22 (m, 3H), 7.16-7.11 (m, 4H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) δ 164.4, 134.9, 132.1, 131.8, 131.4, 131.2, 130.9, 130.34, 129.4, 129.2, 128.4, 128.3, 128.2, 127.9, 127.6, 127.3, 116.2, 106.2; HRMS (ESI) calcd for $\left[\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+} 339.1128$, found 339.1127.

7-Methyl-4,5-diphenyl-[1,2,3]oxadiazolo[3,4-a]quinolin-10-ium3 -olate (3ba): yellow solid ($87 \%, 61.0 \mathrm{mg}$); mp $231-232{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.37(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.14-7.10(\mathrm{~m}, 4 \mathrm{H})$, 2.43 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.4,141.7,135.0$, 131.9, 131.9, 131.4, 131.2, 131.0, 130.4, 129.2, 128.3, 128.1, 127.8, 127.7, 127.6, 125.4, 116.0, 105.9, 22.0; HRMS (ESI) calcd for $\left[\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+} 353.1285$, found 353.1282.

7-(tert-Butyl)-4,5-diphenyl-[1,2,3]oxadiazolo[3,4-a]quinolin-10-ium-3-olate (3ca): yellow solid ($76 \%, 59.9 \mathrm{mg}$); mp $229-230^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.44(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{dd}, J=8.9$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 3 \mathrm{H})$, 7.16-7.12 (m, 4H), $1.28(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 164.5, 154.6, 135.0, 132.3, 132.0, 131.2, 131.1, 130.4, 129.0, 128.2, 128.1, 127.8, 127.7, 127.6, 125.3, 124.2, 115.9, 106.0, 35.4, 31.0; HRMS (ESI) calcd for $\left[\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+}$395.1754, found 395.1755 .

7-Methoxy-4,5-diphenyl-[1,2,3]oxadiazolo[3,4-a]quinolin-10-ium-3-olate (3da): yellow solid ($86 \%, 63.4 \mathrm{mg}$); mp $238-239{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.40(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.28(\mathrm{~m}$, $4 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.14-7.11(\mathrm{~m}, 4 \mathrm{H}), 6.89(\mathrm{~d}, J=1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.4,161.2$, 135.0, 131.9, 131.9, 131.5, 131.1, 131.1, 130.3, 128.3, 128.2, 127.9, 127.6, 121.7, 118.8, 117.8, 109.1, 105.4, 55.9; HRMS (ESI) calcd for $\left[\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}+\mathrm{H}\right]^{+}$369.1234, found 369.1233.

7-Ethoxy-4,5-diphenyl-[1,2,3]oxadiazolo[3,4-a]quinolin-10-ium-3-olate (3ea): yellow solid ($37 \%, 28.4 \mathrm{mg}$); mp $248-249{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.42(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.28(\mathrm{~m}$, $4 \mathrm{H}), 7.23-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.15-7.10(\mathrm{~m}, 4 \mathrm{H}), 6.88(\mathrm{~d}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.95(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.38(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.4,160.6,135.1,131.9,131.8,131.5,131.1,131.1$,
130.3, 128.3, 128.1, 127.8, 127.6, 121.6, 119.0, 117.8, 109.7, 105.4, 64.1, 14.5; HRMS (ESI) calcd for $\left[\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}+\mathrm{H}\right]^{+}$383.1390, found 383.1391 .

7-Chloro-4,5-diphenyl-[1,2,3]oxadiazolo[3,4-a]quinolin-10-ium-3-olate (3fa): yellow solid ($72 \%, 53.8 \mathrm{mg}$); mp $206-207{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.47(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.54(\mathrm{~s}, 1 \mathrm{H}), 7.32-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.14-$ $7.09(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.1,137.4,134.2$, 132.9, 131.3, 131.1, 131.1, 130.6, 130.2, 129.9, 128.5, 128.4, 128.2, 127.7, 127.5, 125.7, 117.8, 106.2; HRMS (ESI) calcd for $\left[\mathrm{C}_{22} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+}$373.0738, found 373.0739 .

7-Bromo-4,5-diphenyl-[1,2,3]oxadiazolo[3,4-a]quinolin-10-ium-3-olate (3ga): yellow solid (78%, 64.6 mg); mp 217-218 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.41(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{dd}, J=8.9$, $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.22$ $(\mathrm{m}, 3 \mathrm{H}), 7.14-7.08(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.1$, $134.2,132.9,132.6,131.3,131.1,131.0,130.8,130.7,130.2,128.5$, 128.4, 128.2, 127.7, 126.0, 125.6, 117.9, 106.2; HRMS (ESI) calcd for $\left[\mathrm{C}_{22} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+}$417.0233, found 417.0238 .

4,5-Diphenyl-7-(trifluoromethoxy)-[1,2,3]oxadiazolo[3,4-a]-quinolin-10-ium-3-olate (3ha): yellow solid ($69 \%, 57.9 \mathrm{mg}$) mp $163-164{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.60(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.59(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 7.33-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.22$ $(\mathrm{m}, 1 \mathrm{H}), 7.15-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.09(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.0,150.5,134.1,133.1,131.4,131.3,131.0,130.9$, 130.2, 128.6, 128.5, 128.3, 127.7, 125.4, 122.1, $120.2(\mathrm{q}, J=257.9 \mathrm{~Hz})$, 119.4, 118.6, 106.3; HRMS (ESI) calcd for $\left[\mathrm{C}_{23} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}+\mathrm{H}\right]^{+}$ 423.0951, found 423.0956.

7-Acetyl-4,5-diphenyl-[1,2,3]oxadiazolo[3,4-a]quinolin-10-ium-3olate (3ia): yellow solid ($91 \%, 69.4 \mathrm{mg}$) $\mathrm{mp} 222-223{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.58(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 8.16(\mathrm{~s}, 1 \mathrm{H}), 7.33-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.14-7.15$ $(\mathrm{m}, 4 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.4,164.0$, $138.5,134.2,132.5,132.3,131.3,131.1,130.3,129.3,129.2,129.1$, $128.5,128.5,128.3,128.2,127.7,116.9,106.8,26.7$; HRMS (ESI) calcd for $\left[\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}+\mathrm{H}\right]^{+}$381.1234, found 381.1230.

7-(Ethoxycarbonyl)-4,5-diphenyl-[1,2,3]oxadiazolo[3,4-a]-quinolin-10-ium-3-olate (3ja): yellow solid ($93 \%, 76.1 \mathrm{mg}$) mp 234$235{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.59(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.34$ $(\mathrm{d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{~s}, 1 \mathrm{H}), 7.33-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.24(\mathrm{~m}$, $3 \mathrm{H}), 7.16-7.10(\mathrm{~m}, 4 \mathrm{H}), 4.38(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.37(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.9,164.1,134.2,132.7$, 132.4, 132.3, 131.4, 131.1, 130.4, 130.3, 129.5, 129.4, 129.1, 128.5, 128.4, 128.2, 127.7, 116.6, 106.8, 62.0, 14.2; HRMS (ESI) calcd for $\left[\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{H}\right]^{+}$411.1339, found 411.1335 .

7-Cyano-4,5-diphenyl-[1,2,3]oxadiazolo[3,4-a]quinolin-10-ium-3-olate (3ka): yellow solid ($38 \%, 27.5 \mathrm{mg}$) mp $255-256{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.64(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.93-7.91(\mathrm{~m}, 2 \mathrm{H})$, $7.36-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.14-7.08(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.7,133.8,133.5,133.4,131.1,131.0$, 130.9, 130.1, 129.6, 128.9, 128.8, 128.7, 128.6, 127.8, 117.8, 117.3, 115.0, 107.0. One carbon signal is not visible due to overlapping; HRMS (ESI) calcd for $\left[\mathrm{C}_{23} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}+\mathrm{H}\right]^{+}$364.1081, found 364.1087. 8-Methyl-4,5-diphenyl-[1,2,3]oxadiazolo[3,4-a]quinolin-10-ium-3-olate (3la): yellow solid ($89 \%, 62.7 \mathrm{mg}$) mp $216-217{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.29(\mathrm{~s}, 1 \mathrm{H}), 7.47-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.27(\mathrm{~m}$, $3 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.15-7.10(\mathrm{~m}, 4 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.4,140.7,135.0,132.6,132.1,131.9,131.2$, 130.5, 130.4, 128.2, 128.2, 128.1, 127.8, 127.6, 127.2, 126.9, 115.7, 106.3, 21.8; HRMS (ESI) calcd for $\left[\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+}$353.1285, found 353.1284 .

7,8-Dimethyl-4,5-diphenyl-[1,2,3]oxadiazolo[3,4-a]quinolin-10-ium-3-olate (3ma): yellow solid ($77 \%, 56.6 \mathrm{mg}$); mp 249-250 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.29(\mathrm{~s}, 1 \mathrm{H}), 7.29-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.23-$ $7.21(\mathrm{~m}, 3 \mathrm{H}), 7.14-7.09(\mathrm{~m}, 4 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.5,141.1,140.0,135.2,132.0,131.8$, $131.2,130.5,130.4,128.2,128.0,127.7,127.5,127.3,125.6,116.1$, 106.0, 20.4, 20.4. One carbon signal is not visible due to overlapping; HRMS (ESI) calcd for $\left[\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+} 367.1441$, found 367.1445 .

8-Chloro-4,5-diphenyl-[1,2,3]oxadiazolo[3,4-a]quinolin-10-ium-3-olate (3na): yellow solid (31\%, 22.9 mg); mp 225-226 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$

NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.53(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.53(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.23(\mathrm{~m}, 3 \mathrm{H})$, 7.14-7.12 (m, 2H), 7.10-7.08 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 164.0, 135.6, 134.4, 131.9, 131.6, 131.5, 131.4, 131.1, 130.3, 129.8, 128.4, 128.4, 128.1, 127.7, 127.6, 116.1, 106.6. One carbon signal is not visible due to overlapping; HRMS (ESI) calcd for $\left[\mathrm{C}_{22} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+}$373.0738, found 373.0739.

8-Bromo-4,5-diphenyl-[1,2,3]oxadiazolo[3,4-a]quinolin-10-ium-3-olate (3oa): yellow solid ($36 \%, 29.8 \mathrm{mg}$); mp 228-229 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.69(\mathrm{~s}, 1 \mathrm{H}), 7.73$ (dd, $J=8.9,1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.20(\mathrm{~m}$, $3 \mathrm{H}), 7.14-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.08(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 164.0,134.4,134.3,132.0,131.7,131.4,131.1,130.2,129.8$, 128.4, 128.4, 128.1, 128.0, 127.7, 127.6, 123.4, 119.2, 106.6; HRMS (ESI) calcd for $\left[\mathrm{C}_{22} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+}$417.0233, found 417.0236.

4,5-Di-p-tolyl-[1,2,3]oxadiazolo[3,4-a]quinolin-10-ium-3-olate (3ab): yellow solid $(98 \%, 71.5 \mathrm{mg})$; mp $235-236{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.48(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.64-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~s}, 4 \mathrm{H}), 6.99(\mathrm{~d}, J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.4,137.8,137.5,132.1,131.9,131.5,131.0,130.7,130.3,129.4$, 129.2, 129.0, 128.8, 128.4, 128.4, 127.2, 116.1, 106.4, 21.4, 21.3; HRMS (ESI) calcd for $\left[\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+} 367.1441$, found 367.1446.

4,5-Bis(4-methoxyphenyl)-[1,2,3]oxadiazolo[3,4-a]quinolin-10-ium-3-olate (3ac): yellow solid ($96 \%, 76.7 \mathrm{mg}$); mp 239-240 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.47(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.60(\mathrm{~m}$, $3 \mathrm{H}), 7.07(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.5,159.2,159.0,132.3,131.8,131.8$, 131.3, 130.8, 129.5, 129.1, 128.4, 127.2, 127.1, 124.0, 116.1, 113.8, 113.2, 106.4, 55.3, 55.1; HRMS (ESI) calcd for $\left[\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{H}\right]^{+}$ 399.1339, found 399.1338.

4,5-Bis(4-(tert-butyl)phenyl)-[1,2,3]oxadiazolo[3,4-a]quinolin-10-ium-3-olate (3ad): yellow solid ($84 \%, 75.9 \mathrm{mg}$); mp $286-287{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.49(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.63(\mathrm{~m}$, $3 \mathrm{H}), 7.27(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H}), 1.25(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.5,150.8,150.7,132.5,131.9,131.7$, 130.9, 130.7, 130.2, 129.2, 129.2, 128.9, 128.5, 127.2, 124.9, 124.3, 116.1, 106.4, 34.6, 34.5, 31.3, 31.2; HRMS (ESI) calcd for $\left[\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+}$451.2380, found 451.2387.

4,5-Bis(4-fluorophenyl)-[1,2,3]oxadiazolo[3,4-a]quinolin-10-ium-3-olate (3ae): yellow solid ($92 \%, 69.1 \mathrm{mg}$); mp 237-238 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.52(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{t}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.70(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.08$ $(\mathrm{m}, 4 \mathrm{H}), 7.03(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.3,162.5(\mathrm{~d}, J=246.9 \mathrm{~Hz}), 162.3(\mathrm{~d}, J=$ $247.0 \mathrm{~Hz}), 132.8(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 132.1(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 131.1,130.7$, $130.6(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 129.7,129.0,128.2,127.5(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 127.3$, 116.3, $115.7(\mathrm{~d}, J=21.5 \mathrm{~Hz}), 115.0(\mathrm{~d}, J=21.7 \mathrm{~Hz})$, 106.0. One carbon signal is not visible due to overlapping; HRMS (ESI) calcd for $\left[\mathrm{C}_{22} \mathrm{H}_{12} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+}$375.0940, found 375.0944.

4,5-Bis(4-bromophenyl)-[1,2,3]oxadiazolo[3,4-a]quinolin-10-ium-3-olate (3af): yellow solid ($89 \%, 88.3 \mathrm{mg}$); mp 279-280 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.54(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.77$ (ddd, $J=$ $8.4,7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{ddd}, J=8.3,7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.02-$ $6.98(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.3,133.7,132.8$, 132.1, 132.0, 131.3 (two overlapping signals), 130.8, 130.6, 130.5, 130.0, 128.9, 128.2, 127.6, 123.2, 122.7, 116.6, 105.8; HRMS (ESI) calcd for $\left[\mathrm{C}_{22} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+} 494.9338$, found 494.9338 .

4,5-Bis(4-(trifluoromethyl)phenyl)-[1,2,3]oxadiazolo[3,4-a]-quinolin-10-ium-3-olate (3ag): yellow solid ($92 \%, 86.8 \mathrm{mg}$); mp $269-270{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.56(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, 7.81 (ddd, $J=8.4,7.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.73$ (ddd, $J=8.2,7.2,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{t}, J=8.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.27(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.0,138.3,135.0,131.5$, 131.4, 130.8, 130.7, 130.6, $130.3(q, J=6.3 \mathrm{~Hz}), 130.2,128.5,128.0$, $127.5,125.6(\mathrm{q}, J=3.6 \mathrm{~Hz}), 125.1(\mathrm{q}, J=3.5 \mathrm{~Hz}), 124.9(\mathrm{q}, J=3.6$ $\mathrm{Hz}), 123.8(\mathrm{q}, J=266.4 \mathrm{~Hz}), 123.7(\mathrm{q}, J=270.8 \mathrm{~Hz}), 116.5,105.5$;

HRMS (ESI) calcd for $\left[\mathrm{C}_{24} \mathrm{H}_{12} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+}$475.0876, found 475.0879.

4,5-Di-m-tolyl-[1,2,3]oxadiazolo[3,4-a]quinolin-10-ium-3-olate (3ah): yellow solid ($94 \%, 69.1 \mathrm{mg}$); mp $221-222{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.49(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{ddd}, J=8.3,6.8,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.64(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.08$ (m, 2H), 7.03 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-6.93$ $(\mathrm{m}, 3.0 \mathrm{~Hz}, 3 \mathrm{H}), 6.90(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.4,137.8,137.0,134.8,132.2$, 131.8, 131.7, 131.5, 131.1, 130.8, 129.3, 129.3, 128.9, 128.5, 128.2, 128.1, 127.4, 127.2, 116.1, 106.3, 21.4; HRMS (ESI) calcd for $\left[\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+} 367.1441$, found 367.1441 .

4,5-Bis(3-fluorophenyl)-[1,2,3]oxadiazolo[3,4-a]quinolin-10-ium3 -olate (3ai): yellow solid ($87 \%, 64.8 \mathrm{mg}$); mp $226-227^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.51(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{t}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.71(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.29(\mathrm{~m}$, $1 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.03(\mathrm{td}, J=8.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.00-6.95(\mathrm{~m}$, $3 \mathrm{H}), 6.86(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.1$, 162.5 (d, $J=246.5$), 162.0 (d, $J=245.1$), 136.6 (d, $J=7.8$), 133.5 (d, J $=8.2$), 131.3, $130.7(\mathrm{~d}, J=1.8), 130.2(\mathrm{~d}, J=2.1), 130.1(\mathrm{~d}, J=8.4)$, 129.9, 129.4 (d, $J=8.3$), 128.6, 128.2, 127.4, 126.9 ($\mathrm{d}, J=2.9$), 126.1 (d, $J=3.0$), 118.0 (d, $J=21.7$), $117.4(\mathrm{~d}, J=22.5), 116.3,115.5(\mathrm{~d}, J=$ 20.8), 115.3 (d, $J=20.8$), 105.7; HRMS (ESI) calcd for $\left[\mathrm{C}_{22} \mathrm{H}_{12} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+}$375.0940, found 375.0946.

4,5-Bis(3-chlorophenyl)-[1,2,3]oxadiazolo[3,4-a]quinolin-10-ium3 -olate (3aj): yellow solid ($84 \%, 68.1 \mathrm{mg}$); mp $240-241^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.52(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.71(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.13(\mathrm{~m}$, 4 H), $7.14(\mathrm{~s}, 1 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=$ $6.4 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.1,136.3,134.4$, 133.7, 133.1, 131.3, 130.9, 130.6, 130.3, 130.2, 130.0, 129.8, 129.4, 129.1, 128.7, 128.6, 128.5, 128.5, 128.2, 127.4, 116.4, 105.6; HRMS (ESI) calcd for $\left[\mathrm{C}_{22} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+} 407.0349$, found 407.0348 .

4,5-Bis(3-bromophenyl)-[1,2,3]oxadiazolo[3,4-a]quinolin-10-ium-3-olate (3ak): yellow solid ($82 \%, 80.7 \mathrm{mg}$); mp $250-251^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.54(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.72(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 7.22$ $(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.05(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.1,136.5$, 133.8, 133.3, 133.2, 131.6, 131.4, 131.3, 130.5, 130.1, 130.0, 129.9, 129.8, 129.4, 128.9, 128.6, 128.2, 127.4, 122.5, 121.8, 116.4, 105.6; HRMS (ESI) calcd for $\left[\mathrm{C}_{22} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+}$494.9338, found 494.9336.

4,5-Di(thiophen-2-yl)-[1,2,3]oxadiazolo[3,4-a]quinolin-10-ium-3olate (3al): yellow solid ($87 \%, 61.0 \mathrm{mg}$); mp $228-229^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.46(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.68(\mathrm{~m}, 3 \mathrm{H})$, $7.43(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=2.4 \mathrm{~Hz}$, 1 H), $7.09(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}) 7.03-7.00(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.9,135.0,131.3,131.2,131.1,131.0,129.9,129.3$, 128.5, 128.4, 128.1, 127.2, 127.1, 127.0, 126.5, 125.6, 116.1, 105.8; HRMS (ESI) calcd for $\left[\mathrm{C}_{18} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}+\mathrm{H}\right]^{+} 351.0256$, found 351.02562 .

4,5-Diethyl-[1,2,3]oxadiazolo[3,4-a]quinolin-10-ium-3-olate (3am): yellow solid ($79 \%, 38.4 \mathrm{mg}$); mp $164-165^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.39(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.77(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{q}, J=7.2 \mathrm{~Hz}$, 2 H), $2.99(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.32-1.27(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.0,132.4,130.7,130.6,128.5,128.3,127.0,125.3$, 116.6, 107.3, 19.9, 19.8, 15.2, 15.0; HRMS (ESI) calcd for $\left[\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+}$243.1128, found 243.1126.

4,5-Dipropyl-[1,2,3]oxadiazolo[3,4-a]quinolin-10-ium-3-olate (3an): yellow solid ($87 \%, 46.8 \mathrm{mg}$); mp $152-153{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.38(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.76(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{t}, J=8.0 \mathrm{~Hz}$, 2 H), $2.91(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.72-1.60(\mathrm{~m}, 4 \mathrm{H}), 1.13-1.07(\mathrm{~m}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.1,131.4,130.7,129.6,128.7$, 128.3, 127.0, 125.5, 116.5, 107.5, 29.0, 28.3, 24.2, 23.9, 14.4, 14.1; HRMS (ESI) calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+}$271.1441, found 271.1444.

4,5-Bis(ethoxycarbonyl)-[1,2,3]oxadiazolo[3,4-a]quinolin-10-ium-3-olate (3ao): yellow solid ($77 \%, 51.0 \mathrm{mg}$); mp $112-113^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.54-8.51(\mathrm{~m}, 1 \mathrm{H}), 8.44-8.40(\mathrm{~m}, 1 \mathrm{H})$, $7.87-7.80(\mathrm{~m}, 2 \mathrm{H}), 4.52(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.45(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $1.45(\mathrm{t}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.42(\mathrm{t}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.9,162.9,162.7,132.2,131.2,128.4,127.9,127.2$, 125.5, 120.3, 116.5, 104.2, 63.2, 62.7, 14.1, 14.0; HRMS (ESI) calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{6}+\mathrm{H}\right]^{+} 331.0925$, found 331.0920.

4-Methyl-5-phenyl-[1,2,3]oxadiazolo[3,4-a]quinolin-10-ium-3olate (3ap): yellow solid ($61 \%, 33.6 \mathrm{mg}$); mp $226-227^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.42(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.61(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.39(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.26(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) δ 165.7, 135.2, 131.8, 130.7, 130.3, 129.4, 129.0, 128.6, 128.4, 127.7, 127.4, 126.6, 116.0, 107.6, 13.9; HRMS (ESI) calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+}$277.0972, found 277.0971.

5-Methyl-4-phenyl-[1,2,3]oxadiazolo[3,4-a]quinolin-10-ium-3olate (3 ap'): yellow solid ($33 \%, 18.0 \mathrm{mg}$); mp 227-228 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.51(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.84(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.48(\mathrm{~m}$, 3H), 7.34 (d, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), 2.39 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) δ 164.3, 132.4, 131.2, 131.0, 129.8, 129.2, 129.2, 128.7, 128.3, 127.4, 126.1, 126.0, 116.6, 106.5, 14.9; HRMS (ESI) calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+}$277.0972, found 277.0973.

4-Ethyl-5-phenyl-[1,2,3]oxadiazolo[3,4-a]quinolin-10-ium-3olate (3aq): yellow solid ($67 \%, 38.9 \mathrm{mg}$); mp $170-171^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.43(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.59(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.32(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.28(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.82(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.16(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 165.0, 135.1, 133.7, 131.2, 130.6, 130.3, 129.7, 128.9, 128.6, 128.4, 127.9, 126.7, 116.0, 107.2, 21.1, 15.3; HRMS (ESI) calcd for $\left[\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+}$291.1128, found 291.1128.

5-Ethyl-4-phenyl-[1,2,3]oxadiazolo[3,4-a]quinolin-10-ium-3olate ($3 a q^{\prime}$): yellow solid ($18 \%, 10.6 \mathrm{mg}$); mp 195-196 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.51(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.83(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.49(\mathrm{~m}$, $3 \mathrm{H}), 7.34-7.32(\mathrm{~m}, 2 \mathrm{H}), 2.81(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.19(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.4,132.6,132.1,131.0$, 130.9, 129.3, 129.1, 128.7, 128.4, 128.2, 127.8, 126.1, 116.9, 106.5, 21.2, 15.3; HRMS (ESI) calcd for $\left[\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+}$291.1128, found 291.1126.

5-Phenyl-4-propyl-[1,2,3]oxadiazolo[3,4-a]quinolin-10-ium-3olate (3ar): yellow solid ($68 \%, 41.2 \mathrm{mg}$); mp $162-163{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.42(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.61-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.33(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.27(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.79-2.75(\mathrm{~m}, 2 \mathrm{H}), 1.57(\mathrm{dq}, J=14.9$, $7.3 \mathrm{~Hz}, 2 \mathrm{H}), 0.86(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 165.1, 135.2, 132.3, 131.5, 130.6, 130.4, 129.6, 128.8, 128.6, 128.3, 127.9, 126.7, 116.0, 107.4, 29.5, 24.2, 14.1; HRMS (ESI) calcd for $\left[\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+}$305.1285, found 305.1287.

4-Phenyl-5-propyl-[1,2,3]oxadiazolo[3,4-a]quinolin-10-ium-3olate (3 ar'): yellow solid ($17 \%, 10.3 \mathrm{mg}$); mp $184-185^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.51(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.82(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.48(\mathrm{~m}$, $3 \mathrm{H}), 7.33-7.30(\mathrm{~m}, 2 \mathrm{H}), 2.76-2.72(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.55(\mathrm{~m}, 2 \mathrm{H})$, $0.89(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.4,132.6$, 131.1, 130.9, 130.8, 129.4, 129.1, 128.7, 128.5, 128.3, 127.7, 126.2, 116.8, 106.5, 30.1, 24.2, 14.3; HRMS (ESI) calcd for [$\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}+$ $\mathrm{H}]^{+} 305.1285$, found 305.1286 .

Mixed products 3as and 3as': obtained in 1:1.1 ratio as a yellow solid in 66% yield (44.3 mg); mp $143-144^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.48(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.03(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.84-7.76$ $(\mathrm{m}, 3 \mathrm{H}), 7.71(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.42$ $(\mathrm{m}, 8 \mathrm{H}), 7.39-7.36(\mathrm{~m}, 2 \mathrm{H}), 4.21(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.08(\mathrm{q}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 1.07(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.0,163.9,163.5,163.0,133.7,132.8,131.7$, 131.6, 131.4, 131.3, 130.7, 130.0, 129.4, 129.1, 129.0, 128.8, 128.7, 128.3, 128.2, 127.8, 127.1, 126.9, 125.9, 123.9, 123.6, 116.4, 105.0,
104.8, 62.4, 62.0, 13.7, 13.5; HRMS (ESI) calcd for $\left[\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}+\right.$ $\mathrm{H}]^{+}$335.1026, found 335.1026 .

4,5-Bis(4-methoxyphenyl)-7-methyl-[1,2,3]oxadiazolo[3,4-a]-quinolin-10-ium-3-olate (3bc): yellow solid ($89 \%, 73.4 \mathrm{mg}$); mp $218-219^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.34(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.50(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~s}, 1 \mathrm{H}), 7.06-7.00(\mathrm{~m}, 4 \mathrm{H}), 6.85(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.44$ $(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.5,159.1,158.9,141.5$, $132.3,131.8,131.6,131.2,130.7,129.5,127.7,127.2,125.3,124.1$, 115.9, 113.8, 113.1, 106.1, 55.2, 55.1, 22.0; HRMS (ESI) calcd for $\left[\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{H}\right]^{+}$413.1496, found 413.1498 .

4,5-Bis(3-chlorophenyl)-7-methyl-[1,2,3]oxadiazolo[3,4-a]-quinolin-10-ium-3-olate (3bj): yellow solid ($64 \%, 54.1 \mathrm{mg}$); mp $231-232{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.40(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.59(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.20(\mathrm{~m}, 5 \mathrm{H}), 7.12(\mathrm{~s}, 2 \mathrm{H}), 7.05-7.00$ $(\mathrm{m}, 2 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.1,142.2$, $136.4,134.4,133.7,133.2,131.5,130.9,130.4,130.3,130.1,129.8$, 129.4, 129.1, 128.6, 128.6, 128.5, 128.4, 127.5, 125.5, 116.2, 105.3, 22.0.HRMS (ESI) calcd for $\left[\mathrm{C}_{23} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+} 421.0505$, found 421.0507.

4,5-Diethyl-7-methyl-[1,2,3]oxadiazolo[3,4-a]quinolin-10-ium-3olate (3 bm): yellow solid ($79 \%, 40.3 \mathrm{mg}$); mp $153-154{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.25(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J$ $=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.96(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.59$ $(\mathrm{s}, 3 \mathrm{H}), 1.31-1.26(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.0$, 141.3, 132.4, 130.3, 129.8, 128.5, 125.1, 124.8, 116.3, 107.0, 22.1, 19.9, 19.7, 15.2, 15.0; HRMS (ESI) calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+}$257.1285, found 257.1287.

Procedure for Synthesis of 4. A mixture of 3aa ($67.6 \mathrm{mg}, 0.2$ $\mathrm{mmol})$, acrylic acid ($28.8 \mathrm{mg}, 0.4 \mathrm{mmol}$), and $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(108.0 \mathrm{mg}, 0.4$ $\mathrm{mmol})$ in 1,2-dichloroethane (3 mL) was placed into a pressure tube. The tube was heated at $120^{\circ} \mathrm{C}$ for 16 h . After the reaction was completed (as monitored by thin-layer chromatography), the mixture was cooled to room temperature. The solvent was then evaporated in vacuum. The resulting residue was purified by flash column chromatography using PE/EA $(50: 1-20: 1)$ to yield 4 as a white solid (72%, 46.1 mg).

4,5-Diphenylpyrazolo[1,5-a]quinoline (4): mp 214-215 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.25-7.15(\mathrm{~m}, 6 \mathrm{H}), 7.12-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.05(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.65(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~d}, J=6.6$ $\mathrm{Hz}, 2 \mathrm{H}), 3.31(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.26(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 0.71(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.3,139.2,137.0$, 136.8, 134.2, 134.0, 131.1, 130.1, 129.1, 129.0, 128.0, 127.9, 127.4, 127.3, 124.6, 124.1, 115.4, 101.0 (one carbon is not visible due to overlapping peaks); HRMS (ESI) calcd for $\left[\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{~N}_{2}+\mathrm{H}\right]^{+}$ 321.1386, found 321.1389 .

Procedure for Synthesis of 5. To an oven-dried 35 mL pressure tube equipped with a stir bar was added $0.24 \mathrm{mmol}(71.5 \mathrm{mg})$ of the aryne precursor, followed by 0.2 mmol of $3 \mathrm{aa}(67.6 \mathrm{mg})$. THF (2 mL if using solid TBAF, 1.7 mL if using a solution of TBAF) was added, and the mixture was stirred until all solid dissolved under nitrogen. To this solution was added 0.3 mmol of solid TBAF (1.6 equiv) in one portion (or 0.3 mL of $1 \mathrm{M} \mathrm{TBAF} \mathrm{solution} \mathrm{in} \mathrm{THF} \mathrm{dropwise)}$. reaction mixture was stirred at room temperature overnight. Upon completion, the reaction mixture was poured into saturated aqueous NaHCO_{3} and extracted three times with EtOAc. The combined extracts were washed once with brine, dried over MgSO_{4}, filtered, and evaporated. The residue was purified by column chromatography using PE/EA (50:1-20:1) to afford the product $5(80 \%, 59.6 \mathrm{mg})$ as a yellow solid.

5,6-Diphenylindazolo[2,3-a]quinoline (5): mp 251-252 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.07(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.75(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.41$ $(\mathrm{m}, 2 \mathrm{H}), 7.33-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 5 \mathrm{H}), 7.21-7.19(\mathrm{~m}, 2 \mathrm{H})$, $6.88(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.6,136.4,136.4,133.9,133.4,131.6,131.1,130.6$, 130.2, 129.1, 128.4, 127.9, 127.9, 127.9, 127.7, 127.4, 126.1, 125.5, 121.7, 120.4, 117.5, 117.3, 116.5; HRMS (ESI) calcd for $\left[\mathrm{C}_{27} \mathrm{H}_{18} \mathrm{~N}_{2}+\right.$ $\mathrm{H}]^{+}$371.1543, found 371.1546 .

Procedure for Synthesis of 6. A mixture of $3 \mathrm{aa}(67.6 \mathrm{mg}, 0.2$ mmol) and dimethyl acetylenedicarboxylate ($34.1 \mathrm{mg}, 0.24 \mathrm{mmol}$) in toluene $(2 \mathrm{~mL})$ in a sealed tube was heated at $115^{\circ} \mathrm{C}$ overnight. The mixture was cooled to room temperature. The solvent was then evaporated in vacuum. The resulting residue was purified by silica column chromatography using PE/EA (4:1) to afford the product 6 $(81 \%, 70.8 \mathrm{mg})$ as a white solid.

Dimethyl 4,5-diphenylpyrazolo[1,5-a]quinoline-2,3-dicarboxylate (6): $\mathrm{mp} 272-273{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.83$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.28-$ $7.26(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.16-7.12(\mathrm{~m}, 4 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H})$, $3.26(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.2,162.1,141.9$, 137.7, 136.8, 135.7, 135.2, 133.3, 130.6, 130.2, 129.8, 128.7, 128.1, 128.0, 127.8, 127.7, 127.6, 126.4, 124.7, 116.5, 111.8, 52.7, 52.3; HRMS (ESI) calcd for $\left[\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{H}\right]^{+}$437.1496, found 437.1499.

Procedure for Synthesis of 7. A mixture of 3aa ($67.6 \mathrm{mg}, 0.2$ $\mathrm{mmol})$ and N-ethylmaleimide $(50.0 \mathrm{mg}, 0.4 \mathrm{mmol})$ in toluene $(2 \mathrm{~mL})$ in a sealed tube was heated at $115{ }^{\circ} \mathrm{C}$ overnight. The mixture was cooled to room temperature. The solvent was then evaporated in vacuum. The resulting residue was purified by silica column chromatography using PE/EA $(2: 1-1: 1)$ to afford the product 6 $(72 \%, 78.3 \mathrm{mg})$ as a yellow solid.

8,14-Diethyl-5,6-diphenyl-6b,9a-dihydro-7H-6a,10-[3,4]-epipyrrolopyrrolo[3',4':3,4]pyrazolo[1,5-a]quinoline-7,9,13,15(8H)tetraone (7): mp 204-205 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41$ $(\mathrm{d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.15(\mathrm{~m}, 6 \mathrm{H})$, $7.12-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.05(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.52(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.31(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $2 \mathrm{H}), 3.26(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 0.71(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100$ $\mathrm{MHz}, \mathrm{DMSO}) \delta 173.3,173.2,139.6,138.2,138.2,137.3,131.0,130.1$, 129.7, 128.4, 127.4, 127.2, 127.1, 126.8, 122.9, 121.0, 113.1, 76.4, 68.3, 53.9, 33.6, 12.1; HRMS (ESI) calcd for $\left[\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{4}+\mathrm{H}\right]^{+}$545.2183, found 545.2185 .

ASSOCIATED CONTENT

(5) Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.6b02356.

Experimental procedures, characterization data, alternative mechanisms, and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra (PDF)

AUTHOR INFORMATION

Corresponding Authors

*E-mail: wangfen@dicp.ac.cn.
*E-mail: xwli@dicp.ac.cn.

Author Contributions

${ }^{\dagger}$ L.L. and H.W. contributed equally.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We acknowledge the financial support from the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, the NNSFC (No. 21525208 and No. 21472186), Postdoctoral Science Foundation of China (2015M571333), and found for new technology of methanol conversion from Dalian Institute of Chemical Physics.

REFERENCES

(1) For selected reviews, see: (a) Miao, Q. Polycyclic Arenes and Heteroarenes: Synthesis, Properties, and Applications; Wiley-VCH: New York, 2015. (b) Wang, C.; Dong, H.; Hu, W.; Liu, Y.; Zhu, D. Chem. Rev. 2012, 112, 2208. (c) Facchetti, A. Chem. Mater. 2011, 23, 733. (d) Allard, S.; Forster, M.; Souharce, B.; Thiem, H.; Scherf, U. Angew. Chem., Int. Ed. 2008, 47, 4070. (e) Anthony, J. E. Angew. Chem., Int. Ed. 2008, 47, 452. (f) Cicoira, F.; Santato, C. Adv. Funct. Mater. 2007,

17, 3421. (g) Bendikov, M.; Wudl, F.; Perepichka, D. F. Chem. Rev. 2004, 104, 4891. (h) Lakowicz, J. R. Principles of Fluorescence Spectroscopy; Plenum: New York, 1999.
(2) (a) Rodríguez-Lojo, D.; Pérez, D.; Peña, D.; Guitián, E. Chem. Comтип. 2015, 51, 5418. (b) Alonso, J. M.; Díaz-Alvarez, A. E.; Criado, A.; Pérez, D.; Peña, D.; Guitián, E. Angew. Chem., Int. Ed. 2012, 51, 173. (c) Fukutani, T.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2011, 76, 2867. (d) Wu, G.; Rheingold, A. L.; Geib, S. J.; Heck, R. F. Organometallics 1987, 6, 1941.
(3) For reviews on sydnones, see: (a) Browne, D. L.; Harrity, J. P. A. Tetrahedron 2010, 66, 553. (b) Stewart, F. H. C. Chem. Rev. 1964, 64, 129.
(4) (a) Brown, A. W.; Harrity, J. P. A. J. Org. Chem. 2015, 80, 2467. (b) Yang, Y.; Kuang, C. Eur. J. Org. Chem. 2014, 2014, 7810. (c) Yang, Y.; Gong, H.; Kuang, C. Synthesis 2013, 45, 1469. (d) Rodriguez, A.; Moran, W. J. Synthesis 2009, 2009, 650. (e) Rodriguez, A.; Fennessy, R.; Moran, W. Tetrahedron Lett. 2009, 50, 3942.
(5) (a) Weisner, A. J.; Turnbull, K. ARKIVOC 2014, 164. (b) Burson, W. C., III; Jones, D. R.; Turnbull, K.; Preston, P. N. Synthesis 1991, 1991, 745. (c) Saljoughian, M.; Turnbull, K. J. Heterocycl. Chem. 1988, 25, 1817. (d) Lowe, J. D.; Turnbull, K. J. Heterocycl. Chem. 1986, 23, 125. (e) Preston, P. N.; Turnbull, K. J. Chem. Soc., Perkin Trans. 1 1977, 1, 1229. (f) Coburn, R. A.; O'Donnell, J. P. J. Org. Chem. 1972, 37, 1707.
(6) (a) Chen, Z.; Wang, B.; Zhang, J.; Yu, W.; Liu, Z.; Zhang, Y. Org. Chem. Front. 2015, 2, 1107. (b) Ackermann, L. Acc. Chem. Res. 2014, 47, 281. (c) Neufeldt, S. R.; Sanford, M. S. Acc. Chem. Res. 2012, 45, 936. (d) Engle, K. M.; Mei, T.-S.; Wasa, M.; Yu, J.-Q. Acc. Chem. Res. 2012, 45, 788. (e) Arockiam, P. B.; Bruneau, C.; Dixneuf, P. H. Chem. Rev. 2012, 112, 5879. (f) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215. (g) McMurray, L.; O’Hara, F.; Gaunt, M. J. Chem. Soc. Rev. 2011, 40, 1885. (h) Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang, S. Chem. Soc. Rev. 2011, 40, 5068.
(7) For selected reviews on $\mathrm{Cp} * \mathrm{Rh}(\mathrm{III})$-catalyzed C-H functionalization of arenes see: (a) Gensch, T.; Hopkinson, M. N.; Glorius, F.; Wencel-Delord, J. Chem. Soc. Rev. 2016, 45, 2900. (b) Song, G.; Li, X. Acc. Chem. Res. 2015, 48, 1007. (c) Shin, K.; Kim, H.; Chang, S. Acc. Chem. Res. 2015, 48, 1040. (d) Kuhl, N.; Schröder, N.; Glorius, F. Adv. Synth. Catal. 2014, 356, 1443. (e) Colby, D. A.; Tsai, A. S.; Bergman, R. G.; Ellman, J. Acc. Chem. Res. 2012, 45, 814. (f) Patureau, F. W.; Wencel-Delord, J.; Glorius, F. Aldrichimica Acta 2012, 45, 31. (g) Song, G.; Wang, F.; Li, X. Chem. Soc. Rev. 2012, 41, 3651. (h) Wencel-Delord, J.; Droge, T.; Liu, F.; Glorius, F. Chem. Soc. Rev. 2011, 40, 4740. (i) Satoh, T.; Miura, M. Chem. - Eur. J. 2010, 16, 11212.
(8) (a) Fukuzumi, K.; Unoh, Y.; Nishii, Y.; Satoh, T.; Hirano, K.; Miura, M. J. Org. Chem. 2016, 81, 2474. (b) Morioka, R.; Nobushige, K.; Satoh, T.; Hirano, K.; Miura, M. Org. Lett. 2015, 17, 3130. (c) Iitsuka, T.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2015, 80, 2804. (d) Iitsuka, T.; Hirano, K.; Satoh, T.; Miura, M. Chem. - Eur. J. 2014, 20, 385. (e) Umeda, N.; Hirano, K.; Satoh, T.; Shibata, N.; Sato, H.; Miura, M. J. Org. Chem. 2011, 76, 13. (f) Umeda, N.; Tsurugi, H.; Satoh, T.; Miura, M. Angew. Chem., Int. Ed. 2008, 47, 4019.
(9) (a) Qi, Z.; Yu, S.; Li, X. J. Org. Chem. 2015, 80, 3471. (b) Song, G.; Gong, X.; Li, X. J. Org. Chem. 2011, 76, 7583. (c) Song, G.; Chen, D.; Pan, C.-L.; Crabtree, R. H.; Li, X. J. Org. Chem. 2010, 75, 7487.
(10) (a) Ge, Q.; Hu, Y.; Li, B.; Wang, B. Org. Lett. 2016, 18, 2483.
(b) Ge, Q.; Li, B.; Wang, B. Org. Biomol. Chem. 2016, 14, 1814.
(c) Ge, Q.; Li, B.; Song, H.; Wang, B. Org. Biomol. Chem. 2015, 13, 7695. (d) Tan, X.; Liu, B.; Li, X.; Li, B.; Xu, S.; Song, H.; Wang, B. J. Am. Chem. Soc. 2012, 134, 16163.
(11) (a) Huang, J.-R.; Zhang, Q.-R.; Qu, C.-H.; Sun, X.-H.; Dong, L.; Chen, Y.-C. Org. Lett. 2013, 15, 1878. (b) Huang, J.-R.; Dong, L.; Han, B.; Peng, C.; Chen, Y.-C. Chem. - Eur. J. 2012, 18, 8896.
(12) (a) Ghorai, D.; Dutta, C.; Choudhury, J. ACS Catal. 2016, 6, 709. (b) Ghorai, D.; Choudhury, J. ACS Catal. 2015, 5, 2692. (c) Ghorai, D.; Choudhury, J. Chem. Commun. 2014, 50, 15159.
(13) (a) Davies, D. L.; Ellul, C. E.; Macgregor, S. A.; McMullin, C. L.; Singh, K. J. Am. Chem. Soc. 2015, 137, 9659. (b) Peng, S.; Liu, S.;

Zhang, S.; Cao, S.; Sun, J. Org. Lett. 2015, 17, 5032. (c) Li, S.-S.; Wang, C.-Q.; Lin, H.; Zhang, X.-M.; Dong, L. Org. Lett. 2015, 17, 3018. (d) Liu, X.; Li, X.; Liu, H.; Guo, Q.; Lan, J.; Wang, R.; You, J. Org. Lett. 2015, 17, 2936. (e) Zhao, S. X.; Yu, R. C.; Chen, W. Z.; Liu, M. C.; Wu, H. Y. Org. Lett. 2015, 17, 2828. (f) Sun, H.; Wang, C.; Yang, Y.-F.; Chen, P.; Wu, Y.-D.; Zhang, X.; Huang, Y. J. Org. Chem. 2014, 79, 11863. (g) Jayakumar, J.; Parthasarathy, K.; Chen, Y.-H.; Lee, T.-H.; Chuang, S.-C.; Cheng, C.-H. Angew. Chem., Int. Ed. 2014, 53, 9889.
(14) (a) Zhang, W.; Wang, C.-Q.; Lin, H.; Dong, L.; Xu, Y.-J. Chem. Eur. J. 2016, 22, 907. (b) Feng, B.; Wan, D.; Yan, L.; Kadam, V. D.; You, J.; Gao, G. RSC Adv. 2016, 6, 66407. (c) Zhao, D.; Wu, Q.; Huang, X.; Song, F.; Lv, T.; You, J. Chem. - Eur. J. 2013, 19, 6239. (d) Jayakumar, J.; Parthasarathy, K.; Cheng, C.-H. Angew. Chem., Int. Ed. 2012, 51, 197. For a review on Rh (III)-catalyzed C-H functionalization for ionic heterocycle synthesis see: (e) Gandeepan, P.; Cheng, C.-H. Chem. - Asian J. 2016, 11, 448.
(15) For selected reports, see: (a) Kudo, E.; Shibata, Y.; Yamazaki, M.; Masutomi, K.; Miyauchi, Y.; Fukui, M.; Sugiyama, H.; Uekusa, H.; Satoh, T.; Miura, M.; Tanaka, K. Chem. - Eur. J. 2016, 22, 14190. (b) Zhou, S.; Wang, J.; Zhang, F.; Song, C.; Zhu, J. Org. Lett. 2016, 18, 2427. (c) Kong, L.; Xie, F.; Yu, S.; Qi, Z.; Li, X. Chin. J. Catal. 2015, 36, 925. (d) Zhou, Z.; Liu, G.; Chen, Y.; Lu, X. Org. Lett. 2015, 17, 5874. (e) Zhang, Y.; Zheng, J.; Cui, S. J. Org. Chem. 2014, 79, 6490. (f) Huckins, J. R.; Bercot, E. A.; Thiel, O. R.; Hwang, T.-Li; Bio, M. M. J. Am. Chem. Soc. 2013, 135, 14492.
(16) Fujita, K.; Owaki, M.; Yamaguchi, R. Chem. Commun. 2002, 2964.
(17) Yang, Y.; Kuang, C. Synthesis 2015, 47, 2281.
(18) Wu, C.; Fang, Y.; Larock, R. C.; Shi, F. Org. Lett. 2010, 12, 2234.
(19) McGowin, A. E.; Jackson, L.; Marshall, L. W.; Tumbull, K. Org. Prep. Proced. Int. 2001, 33, 100.
(20) Sun, K. K. Tetrahedron Lett. 1986, 27, 317.
(21) Fang, Y.; Wu, C.; Larock, R. C.; Shi, F. J. Org. Chem. 2011, 76, 8840.
(22) Mio, M. J.; Kopel, L. C.; Braun, J. B.; Gadzikwa, T. L.; Hull, K. L.; Brisbois, R. G.; Markworth, C. J.; Grieco, P. A. Org. Lett. 2002, 4, 3199.

[^0]: Received: September 27, 2016
 Published: November 7, 2016

